

Ultrasonic Cleaning

STRONGER TOGETHER

Ultrasonic Chemical Cleaning

Ultrasonic Cleaning is a combination technique that uses both chemical and mechanical techniques to effectively remove stuck-on foulant from heat exchangers and parts.

Can be a stand-alone solution, but is often used in conjunction with high pressure water blasting techniques.

Directed Technology

- Targeted Chemistries
 - Optimization of Surface Action for greater Ultrasonic Effect
 - Tailored to the Foulant for optimal removal
- Mechanical Action
 - Ultrasonic Transducer Technology delivers energy to the material surface, resulting in the formation of cavitation bubbles in the liquid

How it Works

- Acoustic (Sound) Energy forms vacuum bubbles
- Bubbles form over the entire surface of the part
- Bubbles grow to a permitted size, and then collapse
- Upon collapses, a microjet is formed with a residual shockwave
 - Breaks up tough scales
 - pushes away sticky foulant
- Rapid change of the diffusion layer, increasing reaction rates limited by diffusion

O. Supponen; P. Kobel ; M. Farhat (2014) Gallery of Fluid Motion (aps.org)

Ultrasonic Capabilities

Heat Exchangers

- Two sides of a heat exchanger both contribute 50% to heat transfer
 - Reliable ways to clean the tube side (High-Pressure Lancing)
 - One to five tubes can be cleaned at a time
 - Shell side cleaning has traditionally been difficult (at the core)
- Ultrasonics can reach all interstitial areas of a bundle simultaneously
 - All tubes cleaned inside and outside
 - Every nook and cranny
 - Better shell side clean

Parts Washing

- Degassing of valves and fittings for repair and reuse
- Treatment of Delicate parts
 - Demister pads, flame arrestors, filters
- Decontaminate scaffolding

Safety and Process Improvement

- Safety
 - Takes people out of the line of fire of HPWB
 - Reduction of risk
 - Engineered controls
- Sustainability
 - Reduction of Water
 - 70-95% reduction in water consumed over HPWB alone
 - Water Recycling Services available to reduce wastewater production
 - Environmentally Friendly Chemistries
 - Low-Toxicity blends can be treated by onsite API separators
 - Reduced Fuel Gas Consumption
 - Lower Greenhouse Gas Emissions

- Process Improvement
 - Improved Heat Transfer Coefficient Rates
 - Measurable results are evidenced once a heat exchanger is put back in service
 - Increased Volume Throughput
 - Precision cleaning technique that returns optimal flow in heat exchanger systems
 - Extended Run-Time
 - Eliminates Maintenance Pit Stops
 - No Re-Cleaning
 - NDE ready the first time

Case Study - Water Conservation

Scenario 1 –

Lightly Fouled Bundle, HPWB ONLY

- 5 Lance ID
 - 37GPM @ 20K (500HP)
 - 2 min/pass x 160 passes
 - Time To Complete 320 min
 - 12,800 Gal Water Consumed
- Bundle Blaster
 - 80GPM @ 10K (500HP Pump)
 - Time To Complete 240 minutes
 - 19,200 Gal Water Consumed
- Total Water Consumed = 32,000
 Gal/bundle
- Time to Complete = 9.5 hours

Scenario 2 -

Light to Moderate Fouled Bundle, U/S + HPWB

- Ultrasonic Dip 2 hours
- 5 Lance ID
 - 37 GPM @ 10K (300HP)
 - 1 min/pass x 160 passes
 - Time To Complete 160 min
 - 6,400 Gal Water Consumed
- Bundle Blaster
 - 50GPM @ 10K (300HP Pump)
 - Time To Complete 60 minutes
 - 3,000 Gal Water Consumed
- Total Water Consumed = 9,400 Gal/bundle
- Time to Complete = 7 hours

20 bundles – Comparison

- Without Ultrasonics
 - 640,000 gal water consumed
 - 190 hour (8 days)
- With Ultrasonics
 - 188,000 gal water consumed
 - 140 hours (6 days)

Savings

- 452,000 gal of water (70% water)
- 250 hours (2 days)

Combined With Water Services

Up To 95% Water Recycled Onsite

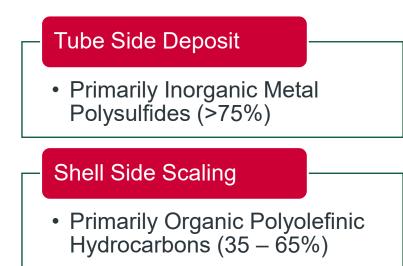
Washpad Comparison

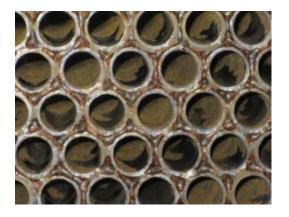
Traditional Washpad Cleaning

- Additional costs beyond the HPWB quote
 - Crane & Riggers
 - Plant Personnel
 - Water Supply
 - Waste Disposal
 - Vac Trucks
 - Power & Fuel
 - Scaffold builders
- Schedule
 - Based on critical path items
 - Many bundles go back into service still fouled due to time constraints
- Total Labor Onsite
 - 15-20 people (incl. Riggers, Plant Personnel, etc.)
- Water Consumption onsite for 30-day TAR 980,000 gallons

Offsite Cleaning with Ultrasonics

- Offsite Cleaning Estimate includes Additional Costs
 - Transportation
- Schedule timelines shortened
 - Simultaneous cleaning
 - More time on tools
 - Minimization of delays due to labor impacts
 - Minimization of weather delays
 - No recleaning (NDE ready)
- Total Labor Onsite
 - 3-5 people (incl. Logistics, Plant Personnel)
 - Elimination of risk
- Water Consumption onsite 49,000 gallons
 - Steam on exchangers prior to pulling
 - 95% less water consumed





Case Study – Twisted Tube® Hydrocracker Bundles

■ June 2020 → Ultrasonic Cleaning of HC Reactor

Tube Side Service - Reactor Effluent

Shell Side Service - Reactor Feed

Case Study presented at HEFC 2022 in Salzburg, Austria https://heatexchanger-fouling.com/wp-content/uploads/2023/01/S11-1230-Thursday-Shank.pdf

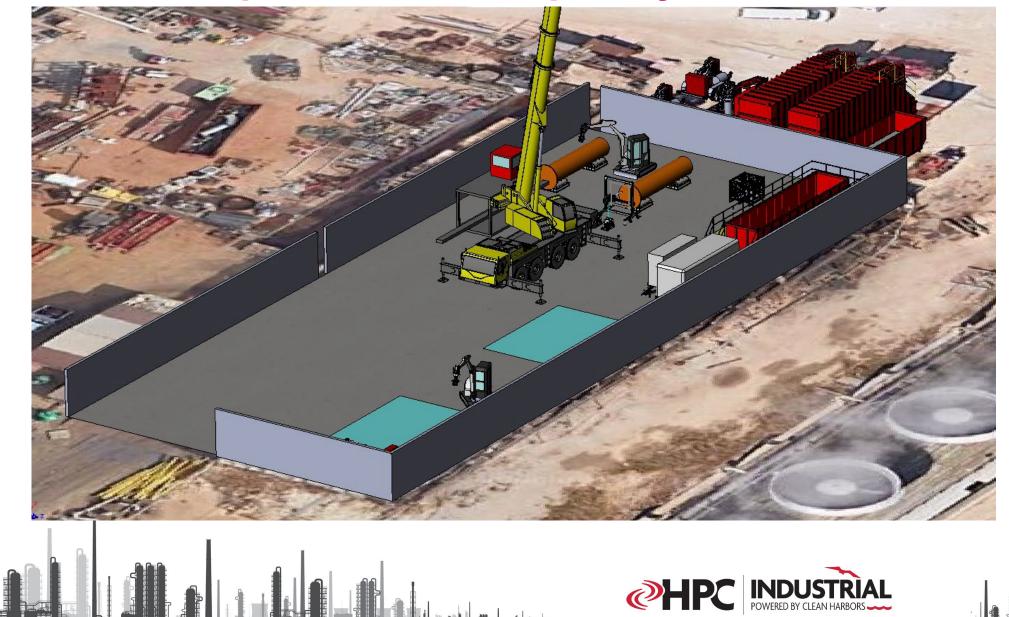
Schedule Reduction

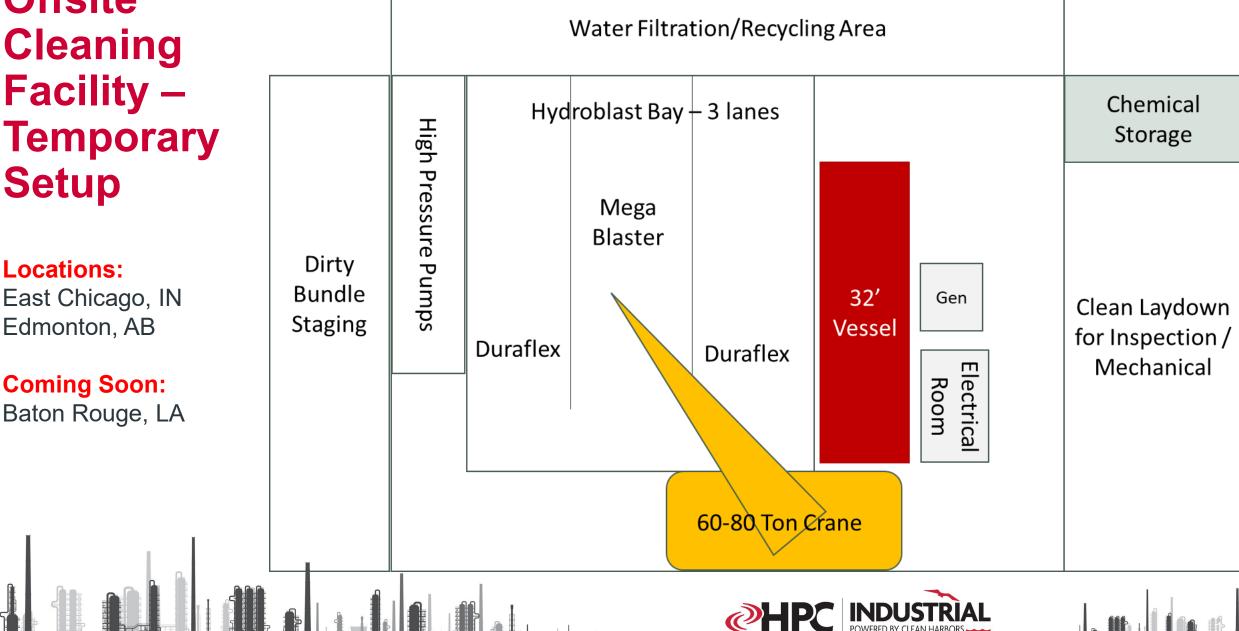
Prior TAR – Critical Path

- 4x Twisted Tube HC bundles were critical path for the unit
- Pulled on day one, and resources spent hydroblasting for duration of outage
- 21-day TAR bundles returned to service in fouled condition

2020 TAR

- Bundles were complete in 4 days
- No tying up of resources

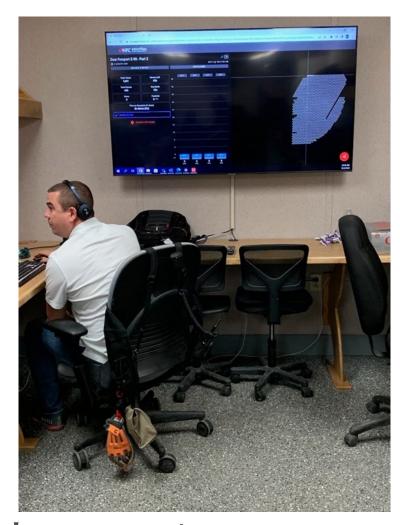



Ultrasonic Cleaning Solutions

On-Site Setup – TAR or Temporary Insite

Offsite Cleaning **Facility** – **Temporary** Setup

Turnkey Offsite Cleaning Facility – Plan View


6ⁿ 64 目目 目 E FLECTRICA ROOMS LAB CONTROL ROOM WASH ROOMS 3 Showers K**P а онсы TRANING/ CONFERENCE ROOM OC) PS ADMIN NTCHON/BREAK ROOM LOCKER/SHOWP ROOM

EVAP

GAC

Coming Soon!

Real Time Data

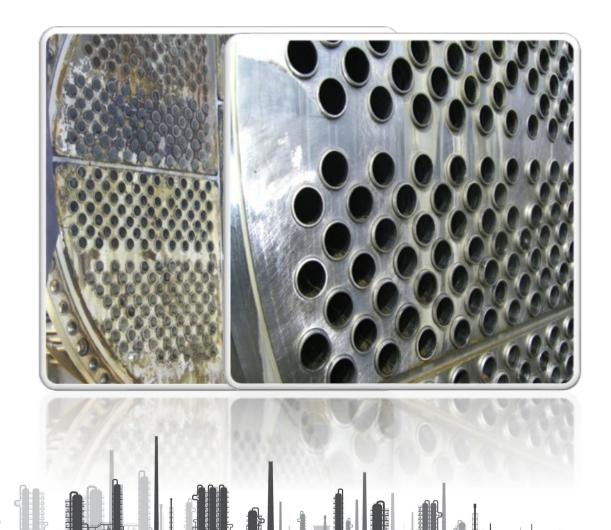
Post Job Data

CHPC INDUSTRIAL POWERED BY CLEAN HARBORS

Value-Added Proposition

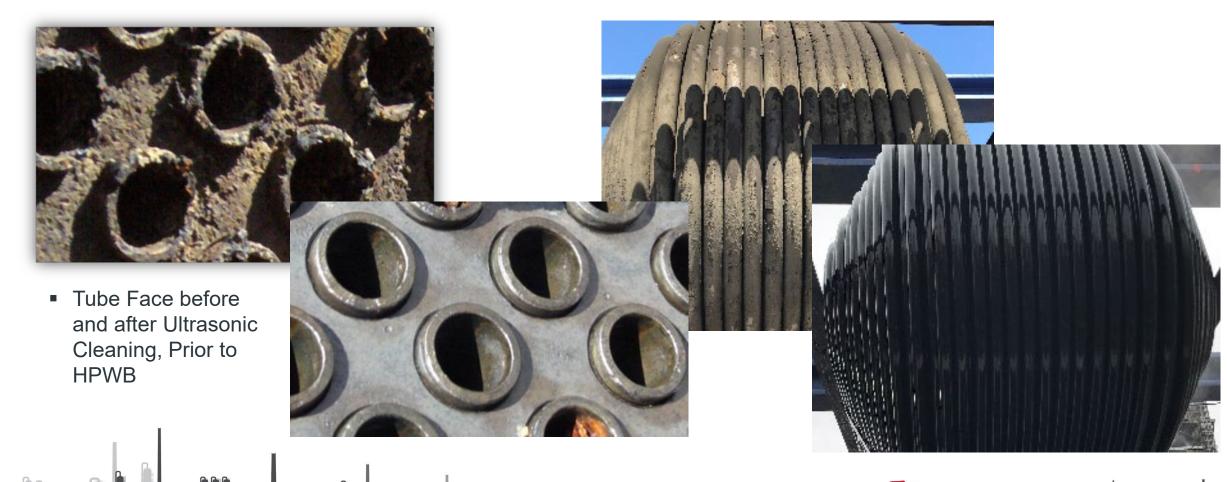
What Role can Specialty Mechanical Services (SMS) Support in this Opportunity

- Un-Bolt the exchanger and drop the head
- Pull bundle
- **Inspect** bundles, sealing surface, and shell
 - Client Inspection of shell and sealing surface (API 510 – Visual Inspection)
 - NDE contractor inspect tubes (Eddy Current Inspection)
- **Repair** sealing surface, shell, and tubes
- Plug blocked tubes
- **Re-tube** damaged or blocked tubes
- **Push** bundle back into exchanger shell
- Hydrostatic testing of the bundle
- Bolt-Up exchanger

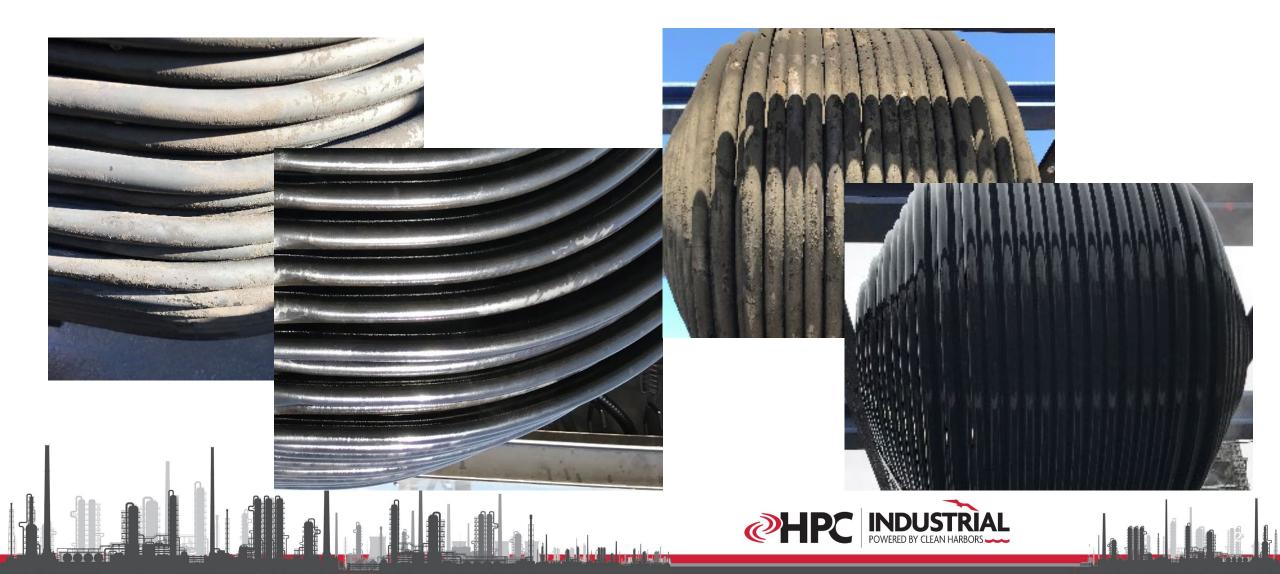

Questions?

Roxanne Shank

VP, National Product Line - North America Ultrasonic Operations SME <u>shank.roxanne@cleanharbors.com</u> (403)324-8146


© 2023 CLEAN HARBORS - CONFIDENTIAL

Before & After



Before & After

Results – U-bends

Return on Investment

Parts Cleaning

